If $c \cdot a \equiv c \cdot b ~(mod ~n)$, then Prove that $a \equiv b ~(mod ~\frac{n}{d} )$, where $d = gcd(c, n)$.
In Theorem we saw that if $a \equiv b ~(mod ~n)$, then $c \cdot a \equiv c \cdot b ~(mod ~n)$ for any integer $c$. What about converse $?$ i.e. if $c \cdot a \equiv c \cdot b ~(mod ~n)$ for any integer $c$ does it implies $a \equiv b ~(mod ~n) ~ ?$ we give answer to this question as No. Here is an example $2 \cdot 4 \equiv 2 \cdot 1 ~(mod~6)$, but $4 \not\equiv 1 ~(mod ~6)$. In brief: One cannot unrestrictedly cancel a common factor in the arithmetic of congruences. Theorem: If $c \cdot a \equiv c \cdot b ~(mod ~n)$, then $a \equiv b ~(mod ~\frac{n}{d} )$, where $d = gcd(c, n)$. Proof: Suppose that $c \cdot a \equiv c \cdot b ~(mod ~n)$. Therefore by definition of congruences $c \cdot a ~-~ c \cdot b = n \cdot k$ for some integer $k$. Since $gcd(c, n) = d$, there exist relatively prime integers $r$ and $s$ such that $c = d \cdot r,~ n = d \cdot s$. We put $c = d \cdot r,~ n = d \cdot s$ in $c \cdot a - c \cdot b = n \cdo...