Let $p$ be a prime number. Then prove that $x^2 \equiv 1 ~(mod ~p)$ if and only if $x \equiv 1 ~ (mod ~p) $ or $x \equiv - 1 ~ (mod ~p) $.
Lemma: Let $p$ be a prime number. Then prove that $x^2 \equiv 1 ~(mod ~p)$ if and only if $x \equiv 1 ~ (mod ~p) $ or $x \equiv - 1 ~ (mod ~p) $. P roof: Suppose that $x^2 \equiv 1 ~(mod ~p)$. This quadratic congruence is equivalent to $(x^2 -1 )\equiv 0 ~(mod ~p)$ i.e. $(x -1 ) ~(x + 1) \equiv 0 ~(mod ~p)$. This implies that $p ~|~ (x - 1) ~ (x+1)$. By Theorem , $p ~|~ (x - 1)$ or $p ~|~ (x + 1)$. This gives that $x \equiv 1 ~ (mod ~p) $ or $x \equiv - 1 ~ (mod ~p) $. Conversely, suppose that either $x \equiv 1 ~ (mod ~p) $ or $x \equiv - 1 ~ (mod ~p) $. Then clearly $x^2 \equiv 1 ~(mod ~p)$.