There is an infinite number of primes.
Theorem: There is an infinite number of primes. Proof : Suppose on the contrary that there are only finite number of primes. Let $p_{1} = 2, p_2 = 3, p_3 = 5, p_4 = 7, \cdots $ be the primes in ascending order, and suppose that there is a last prime, called $p_n$· Now consider the positive integer $P = (p_{1} \cdot p_2 ~ \cdots ~ p_n)+ 1$. Since $P > 1$, by Theorem , $P$ is divisible by some prime $p$. But $p_{1}, ~p_2, ~ p_3, ~\cdots~, p_n $ are the only prime numbers, so that $p$ must be equal to one of $p_{1}, ~p_2, ~ p_3, ~\cdots~, p_n $ and hence $p ~|~ p_{1} \cdot p_2 ~ \cdots ~ p_n$· Since $p ~|~ p_{1} \cdot p_2 ~ \cdots ~ p_n$ and $p ~|~ P$, we will get $p ~|~ (p_{1} \cdot p_2 ~ \cdots ~ p_n) - P$ i.e. $p ~|~ 1$. Since the only positive divisor of the integer $1$ is $1$ itself so we will get a contradiction to $p > 1$. Hence there are infinite number of primes.