If $c \cdot a \equiv c \cdot b ~(mod ~n)$, then Prove that $a \equiv b ~(mod ~\frac{n}{d} )$, where $d = gcd(c, n)$.

 In Theorem we saw that if $a \equiv b ~(mod ~n)$, then $c \cdot a \equiv c \cdot b ~(mod ~n)$ for any integer $c$. What about converse $?$ i.e. if $c \cdot a \equiv c \cdot b ~(mod ~n)$ for any integer $c$ does it implies  $a \equiv b ~(mod ~n) ~ ?$  we give answer to this question as No. Here is an example $2 \cdot 4  \equiv 2 \cdot 1 ~(mod~6)$, but $4 \not\equiv 1 ~(mod ~6)$. In brief: One cannot unrestrictedly cancel a common factor in the arithmetic of congruences. 

Theorem: If $c \cdot a \equiv c \cdot b ~(mod ~n)$, then $a \equiv b ~(mod ~\frac{n}{d} )$, where $d = gcd(c, n)$. 

Proof: Suppose that $c \cdot a \equiv c \cdot b ~(mod ~n)$. Therefore by definition of congruences $c \cdot a ~-~ c \cdot b = n \cdot k$ for some integer $k$. Since  $gcd(c, n) = d$, there exist relatively prime integers $r$ and $s$ such that  $c = d \cdot r,~ n = d \cdot s$. We put $c = d \cdot r,~ n = d \cdot s$ in $c \cdot a - c \cdot b = n \cdot k$ and cancel the common factor $d$, we will get  

$r \cdot (a - b) =k \cdot s$ This gives $s ~|~ r\cdot (a - b) $ but $gcd(r, s) = 1$. By Euclid's lemma, we will get  

$s ~|~ a - b$ i.e.  $a \equiv b ~(mod ~s)$. We put  $s = \frac{n}{d}$ in $a \equiv b ~(mod ~s)$, hence $a \equiv b ~(mod~ \frac{n}{d} )$.

Corollary: If $c \cdot a \equiv c \cdot b ~(mod ~n)$ and $gcd(c, n ) = 1$, \linebreak then $a \equiv b ~(mod ~ n )$. 

Corollary: If $c\cdot a \equiv c\cdot b ~(mod ~p) $  where $p$ is a prime number and $p \nmid c$, then $a \equiv b ~(mod ~p)$. 

Popular posts from this blog

Definition of divisibility and Theorem on divisibility

The Division Algorithm / Prove that given integers $a$ and $b$, with $b > ~ 0$, there exist unique integers $q$ and $r$ such that $a = b \cdot q +r$, where $0 \leq r < b$. The integer $q$ is called the $\textbf{quotient}$ and the integer $r$ is called $\textbf{remainder}$.

Define Greatest Common Divisor and Prove that if $a$ and $b$ are any integers, not both of them are zero. Then there exist integers $x$ and $y$ such that $gcd(a, b) =a \cdot x + b \cdot y$.