Elementary Properties of Congruences: Let $n > 1$ be fixed and $a,~ b,~ c,~ d$ be arbitrary integers. Then the following properties hold: 1) $a \equiv a ~(mod ~n)$. 2) If $a \equiv b ~(mod ~n)$, then $b \equiv a ~(mod ~n)$. 3) If $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$, then $a \equiv c ~(mod ~n)$. 4) If $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$, then $a + c \equiv b + d ~(mod ~n)$ and $a \cdot c \equiv b \cdot d ~(mod ~n)$. 5) If $a \equiv b~ (mod ~n)$, then $a + c \equiv b + c ~(mod ~n)$ and $a \cdot c \equiv b \cdot c ~(mod ~n)$. 6) If $a \equiv b~ (mod ~n)$, then $a^k \equiv b^k ~(mod ~n)$ for any positive integer $k$. 7) If $a \equiv b~ (mod ~n)$ and $d> 0$ such that $ d \mid n$, then $a \equiv b ~(mod ~d)$.

Elementary Properties of Congruences: Let $n > 1$ be fixed and $a,~ b,~ c,~ d$ be arbitrary integers. Then the following properties hold: 

1) $a  \equiv a ~(mod ~n)$.

2)  If $a \equiv b ~(mod ~n)$, then $b \equiv a ~(mod ~n)$. 

3) If $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$, then  $a \equiv c ~(mod ~n)$. 

4) If $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$, then  $a + c \equiv b + d ~(mod ~n)$ and $a \cdot c \equiv b \cdot d ~(mod ~n)$. 

5) If $a \equiv b~ (mod ~n)$, then $a + c \equiv b + c ~(mod ~n)$ and $a \cdot c \equiv b \cdot c ~(mod ~n)$. 

6) If $a \equiv b~ (mod ~n)$, then $a^k \equiv  b^k ~(mod ~n)$ for any positive integer $k$.

7)   If $a \equiv b~ (mod ~n)$ and $d> 0$ such that $ d \mid n$, then $a \equiv  b ~(mod ~d)$.


Proof: $1.$ For every integer $a$, we have $a - a = 0$ and $n ~|~ (a -a = 0)$. Therefore by definition of congruences $a  \equiv a ~(mod ~n)$.

$2.$ Suppose that $a \equiv b ~(mod ~n)$. Therefore $a = b + n \cdot k$ for some integer $k$. We can write $b$ as $b = a - n \cdot k = a + (- k ) \cdot n$, where $(- k)$ is an integer. So by definition of congruences $b  \equiv a ~(mod ~n)$.

$3.$ Suppose that  $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$. So that  $a = b + n \cdot k_{1}$ for some integer $k_{1} $ and  $b = c + n \cdot k_2$ for some integer $k_2$. Put $b = c + n \cdot k_2$ in $a = b + n \cdot k_{1}$. Therefore $a = b + n \cdot k_{1} = c + n \cdot k_2 + n \cdot k_{1} = c + n  \cdot (k_{1} + k_2)$, where $(k_{1} + k_2)$ is an integer. So by definition of congruences $a  \equiv c ~(mod ~n)$.

$4.$ Suppose that  $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$. So that  $a = b + n \cdot k_{1}$ for some integer $k_{1} $ and  $c = d + n \cdot k_2$ for some integer $k_2$. Therefore $a + c = b +  n \cdot k_{1} + d + n \cdot k_2 = b + d + n  \cdot (k_{1} + k_2)$, where $(k_{1} + k_2)$ is an integer. So by definition of congruences $a + c \equiv b + d ~(mod ~n)$. We have $a \cdot c = (b + n \cdot k_{1}) \cdot (d + n \cdot k_2) = b \cdot d + b \cdot n \cdot k_2 + d \cdot  n \cdot k_{1} +  n \cdot k_{1}\cdot  n \cdot k_2 = b \cdot d + n \cdot (b \cdot k_2 + d \cdot k_{1} +  n \cdot k_{1} \cdot  k_2 )$, where $(b \cdot k_2 + d \cdot k_{1} +  n \cdot k_{1} \cdot  k_2 )$ is an integer. So by definition of congruences $a ~c  \equiv b ~d ~(mod ~n)$.

$5.$ Since $a \equiv b ~(mod ~n)$ and $c \equiv c ~(mod ~n)$ so  $5.$ follows from $4.$ 

$6.$ Suppose that  $a \equiv b ~(mod ~n)$. we prove property $6.$ with the help of Mathematical Induction. The statement certainly 

holds for $k = 1$, and we will assume it is true for some fixed $k$. From $4.$, we know  that  $a \equiv b ~(mod ~n)$ and $a^k \equiv b^k ~(mod ~n)$ together imply that $a \cdot a^k \equiv b \cdot b^k ~(mod ~n)$, or 

equivalently  $a^{k+1} \equiv b^{k+1} ~(mod ~n)$. This is the form the statement should take for $k + 1$ and so the induction step is complete. Therefore $a^k \equiv  b^k ~(mod ~n)$ for any positive integer $k$. 

$7.$ Suppose that $a \equiv b ~(mod ~n)$ and $d > 0$ such that $d \mid n$. Therefore there exist integers $k_{1}, ~k_2$ such that   $a = b + n \cdot k_{1}$ and $n = d \cdot k_2$. We put $n = d \cdot k_2$ in $a = b + n \cdot k_{1}$, so $a = b + (d \cdot k_2) \cdot k_{1} = b + d \cdot (k_{1} \cdot k_2)$, where $k_{1} \cdot k_2$ is an integer. This gives that $a \equiv b ~(mod ~ d)$.

Popular posts from this blog

Definition of divisibility and Theorem on divisibility

The Division Algorithm / Prove that given integers $a$ and $b$, with $b > ~ 0$, there exist unique integers $q$ and $r$ such that $a = b \cdot q +r$, where $0 \leq r < b$. The integer $q$ is called the $\textbf{quotient}$ and the integer $r$ is called $\textbf{remainder}$.

Define Greatest Common Divisor and Prove that if $a$ and $b$ are any integers, not both of them are zero. Then there exist integers $x$ and $y$ such that $gcd(a, b) =a \cdot x + b \cdot y$.