Elementary Properties of Congruences: Let $n > 1$ be fixed and $a,~ b,~ c,~ d$ be arbitrary integers. Then the following properties hold: 1) $a \equiv a ~(mod ~n)$. 2) If $a \equiv b ~(mod ~n)$, then $b \equiv a ~(mod ~n)$. 3) If $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$, then $a \equiv c ~(mod ~n)$. 4) If $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$, then $a + c \equiv b + d ~(mod ~n)$ and $a \cdot c \equiv b \cdot d ~(mod ~n)$. 5) If $a \equiv b~ (mod ~n)$, then $a + c \equiv b + c ~(mod ~n)$ and $a \cdot c \equiv b \cdot c ~(mod ~n)$. 6) If $a \equiv b~ (mod ~n)$, then $a^k \equiv b^k ~(mod ~n)$ for any positive integer $k$. 7) If $a \equiv b~ (mod ~n)$ and $d> 0$ such that $ d \mid n$, then $a \equiv b ~(mod ~d)$.
Elementary Properties of Congruences: Let $n > 1$ be fixed and $a,~ b,~ c,~ d$ be arbitrary integers. Then the following properties hold:
1) $a \equiv a ~(mod ~n)$.
2) If $a \equiv b ~(mod ~n)$, then $b \equiv a ~(mod ~n)$.
3) If $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$, then $a \equiv c ~(mod ~n)$.
4) If $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$, then $a + c \equiv b + d ~(mod ~n)$ and $a \cdot c \equiv b \cdot d ~(mod ~n)$.
5) If $a \equiv b~ (mod ~n)$, then $a + c \equiv b + c ~(mod ~n)$ and $a \cdot c \equiv b \cdot c ~(mod ~n)$.
6) If $a \equiv b~ (mod ~n)$, then $a^k \equiv b^k ~(mod ~n)$ for any positive integer $k$.
7) If $a \equiv b~ (mod ~n)$ and $d> 0$ such that $ d \mid n$, then $a \equiv b ~(mod ~d)$.
Proof: $1.$ For every integer $a$, we have $a - a = 0$ and $n ~|~ (a -a = 0)$. Therefore by definition of congruences $a \equiv a ~(mod ~n)$.
$2.$ Suppose that $a \equiv b ~(mod ~n)$. Therefore $a = b + n \cdot k$ for some integer $k$. We can write $b$ as $b = a - n \cdot k = a + (- k ) \cdot n$, where $(- k)$ is an integer. So by definition of congruences $b \equiv a ~(mod ~n)$.
$3.$ Suppose that $a \equiv b ~(mod ~n)$ and $b \equiv c ~(mod ~n)$. So that $a = b + n \cdot k_{1}$ for some integer $k_{1} $ and $b = c + n \cdot k_2$ for some integer $k_2$. Put $b = c + n \cdot k_2$ in $a = b + n \cdot k_{1}$. Therefore $a = b + n \cdot k_{1} = c + n \cdot k_2 + n \cdot k_{1} = c + n \cdot (k_{1} + k_2)$, where $(k_{1} + k_2)$ is an integer. So by definition of congruences $a \equiv c ~(mod ~n)$.
$4.$ Suppose that $a \equiv b ~(mod ~n)$ and $c \equiv d ~(mod ~n)$. So that $a = b + n \cdot k_{1}$ for some integer $k_{1} $ and $c = d + n \cdot k_2$ for some integer $k_2$. Therefore $a + c = b + n \cdot k_{1} + d + n \cdot k_2 = b + d + n \cdot (k_{1} + k_2)$, where $(k_{1} + k_2)$ is an integer. So by definition of congruences $a + c \equiv b + d ~(mod ~n)$. We have $a \cdot c = (b + n \cdot k_{1}) \cdot (d + n \cdot k_2) = b \cdot d + b \cdot n \cdot k_2 + d \cdot n \cdot k_{1} + n \cdot k_{1}\cdot n \cdot k_2 = b \cdot d + n \cdot (b \cdot k_2 + d \cdot k_{1} + n \cdot k_{1} \cdot k_2 )$, where $(b \cdot k_2 + d \cdot k_{1} + n \cdot k_{1} \cdot k_2 )$ is an integer. So by definition of congruences $a ~c \equiv b ~d ~(mod ~n)$.
$5.$ Since $a \equiv b ~(mod ~n)$ and $c \equiv c ~(mod ~n)$ so $5.$ follows from $4.$
$6.$ Suppose that $a \equiv b ~(mod ~n)$. we prove property $6.$ with the help of Mathematical Induction. The statement certainly
holds for $k = 1$, and we will assume it is true for some fixed $k$. From $4.$, we know that $a \equiv b ~(mod ~n)$ and $a^k \equiv b^k ~(mod ~n)$ together imply that $a \cdot a^k \equiv b \cdot b^k ~(mod ~n)$, or
equivalently $a^{k+1} \equiv b^{k+1} ~(mod ~n)$. This is the form the statement should take for $k + 1$ and so the induction step is complete. Therefore $a^k \equiv b^k ~(mod ~n)$ for any positive integer $k$.
$7.$ Suppose that $a \equiv b ~(mod ~n)$ and $d > 0$ such that $d \mid n$. Therefore there exist integers $k_{1}, ~k_2$ such that $a = b + n \cdot k_{1}$ and $n = d \cdot k_2$. We put $n = d \cdot k_2$ in $a = b + n \cdot k_{1}$, so $a = b + (d \cdot k_2) \cdot k_{1} = b + d \cdot (k_{1} \cdot k_2)$, where $k_{1} \cdot k_2$ is an integer. This gives that $a \equiv b ~(mod ~ d)$.