Use Euclidean Algorithm to find $gcd(42823,6409) $ and find the values of integer $x$ and $y$ satisfying $gcd(42823,6409) = 42823 \cdot x + 6409 \cdot y$.
Example: Use Euclidean Algorithm to find $gcd(42823,6409) $ and find the values of integer $x$ and $y$ satisfying $gcd(42823,6409) = 42823 \cdot x + 6409 \cdot y$.
Answer: To find $gcd(42823,6409) $ using Euclidean Algorithm. We have to apply Division Algorithm to integers $42823$ and $6409$. Firstly we divide $42823$ by $6409$. When we divide $42823$ by $6409$, we get $q = 6$ (i.e. $6$ is a quotient) and $r = 4369$ (i.e. $4369$ is a remainder). So we get following system of equations in Euclidean Algorithm.
$42823 = 6409~ \cdot ~6 + 4369$
$6409 = 4369 ~\cdot ~1 + 2040$
$4369 = 2040 ~\cdot ~2 + 289$
$2040 = 289 ~\cdot~ 7 + 17$
$289 = 17 ~\cdot ~17 + 0$
$17$ is the last nonzero remainder obtained in this Algorithm, so $gcd(42823,6409) = 17$.
From the above equations, putting value of remainder (eliminating remainder i.e. $17, ~289,~2040,~ 4369$) and simplifying we can find value of integers $x$ and $y$ such that $gcd(42823,6409) = 42823 \cdot x + 6409 \cdot y$.
We can write $gcd(42823,6409) = 17$ as follows
$17 = 2040 ~-~ 289 ~\cdot~ 7$
$17 = 2040 ~-~ (4369 ~-~ 2040 ~\cdot~ 2 ) ~\cdot~ 7$
$17 = 2040 ~-~ 4369 ~\cdot~ 7 + 2040 ~\cdot~ 14$
$17 = 2040 ~\cdot~ 15 ~-~ 4369 ~\cdot~ 7 $
$17 = (6409 ~-~ 4369 ~\cdot~ 1 )~\cdot~ 15 ~-~ 4369 ~\cdot~ 7 $
$17 = 6409 ~\cdot~ 15~ -~ 4369 ~\cdot~ 15 - 4369 ~\cdot~ 7 $
$17 = 6409 ~\cdot~ 15 ~-~ 4369 ~\cdot~ 22 $
$17 = 6409 ~\cdot~ 15~ -~ (42823 ~-~ 6409 ~\cdot~ 6 ) ~\cdot~ 22 $
$17 = 6409 ~\cdot~ 15 ~-~ 42823 ~\cdot~ 22 + 6409 ~\cdot~ 132 $
$17 = 6409 ~\cdot~ 147 ~-~ 42823 ~\cdot~ 22 $
$17 = 6409 ~\cdot~ 147 + 42823 ~\cdot~ ( - 22) $
$17 =42823 ~\cdot~ ( - 22) + 6409 ~\cdot~ 147 $
comparing with $gcd(42823,6409) = 17 = 42823 \cdot x + 6409 \cdot y$, we get $x = - 22 $ and $y = 147 $.