Solve the system of linear congruences $x \equiv 2 ~(mod ~3)$ , $x \equiv 3 ~(mod ~5)$, $x \equiv 2 ~(mod ~7)$.
Example: Solve the system of linear congruences $x \equiv 2 ~(mod ~3)$, $x \equiv 3 ~(mod ~5)$, $x \equiv 2 ~(mod ~7)$. Answer: Let $ n = 3 \cdot 5 \cdot 7 = 105, ~N_{1} = \dfrac{n}{3} = \dfrac{105}{3} = 35, ~ N_2 = \dfrac{n}{5} = \dfrac{105}{5} = 21, ~ N_3 = \dfrac{n}{7} = \dfrac{105}{7} = 15$. Now, we find solution of linear congruences $35 x_{1} \equiv 1 ~(mod ~3), ~ 2 1 x_2 \equiv 1 ~(mod ~5), 15x_3 \equiv 1 ~(mod ~7)$ We will find solution of linear congruences $35 x_{1} \equiv 1 ~(mod ~3), ~ 2 1 x_2 \equiv 1 ~(mod ~5), 15x_3 \equiv 1 ~(mod ~7)$ by trial and error method. Firstly we find solution of linear congruence $35 x_{1} \equiv 1 ~(mod ~3)$. We will consider simple values of $x_{1}$ as $1, ~-1,~ 2,~ -2,~ \cdots $ and check which value satisfy given linear congruence $35 x_{1} \equiv 1 ~(mod ~3)$. When we take $x_{1} = 1, ~-1,~ 2,~ -2,~3, ~ -3$, we observe that $x_{1} =1, ~-1,$ are not a solution of $35 x_{1} \equiv 1 ...