Define a complete set of residues or a complete system of residues

 Definition:  The set of $n$ integers $0, ~1, ~2, ... ,~ n - 1$ is called the set of least nonnegative residues  modulo $n$. In general, a collection of $n$ integers $a_{1},~ a_2, \cdots ,~ a_n$ is said to form a complete set of residues or a complete system of residues modulo $n$ if every integer is congruent modulo $n$ to one and only one of the $a_k$ where $1\leq k \leq n$.

We can observe that The set of $5$ integers $0, ~1, ~2, ~3,~ 4$ is  the set of least nonnegative residues modulo $5$ and a collection of $5$ integers $10, ~21, ~37, ~43, ~59$  form a complete set of residues (or  a complete system of residues ) modulo $5$. Observe that any $n$ integers form a complete set of residues modulo $n$ if and only if no two of the integers are congruent modulo $n$.

Remark: Note that for given integer $n > 0$, negative integer can  form a complete set of residues (or  a complete system of residues ) modulo $n$. For example $59 \equiv 4 ~(mod~ 5)$ and $4 \equiv -1 ~(mod~ 5)$. Therefore  $59 \equiv -1 ~(mod~ 5)$. Also $43 \equiv 3 ~(mod~ 5)$ and $3 \equiv -2 ~(mod~ 5)$. Therefore $43 \equiv -2 ~(mod~ 5)$. We have $37 \equiv 2 ~(mod~ 5)$ and $2 \equiv -3 ~(mod~ 5)$. Therefore $37 \equiv -3 ~(mod~ 5)$. On the same line $21 \equiv 1 ~(mod~ 5)$ and $1 \equiv -4 ~(mod~ 5)$. Therefore $21 \equiv -4 ~(mod~ 5)$. lastly $10 \equiv 0~(mod~ 5)$ and $0 \equiv -5 ~(mod~ 5)$. Therefore $10 \equiv -5 ~(mod~ 5)$. Hence $-5, ~ -4, ~ -3, ~-2, ~-1$ form a complete set of residues (or  a complete system of residues ) modulo $5$.

Popular posts from this blog

Definition of divisibility and Theorem on divisibility

The Division Algorithm / Prove that given integers $a$ and $b$, with $b > ~ 0$, there exist unique integers $q$ and $r$ such that $a = b \cdot q +r$, where $0 \leq r < b$. The integer $q$ is called the $\textbf{quotient}$ and the integer $r$ is called $\textbf{remainder}$.

Define Greatest Common Divisor and Prove that if $a$ and $b$ are any integers, not both of them are zero. Then there exist integers $x$ and $y$ such that $gcd(a, b) =a \cdot x + b \cdot y$.