If $a \mid b$, show that $(- a ) \mid b, ~ a \mid (- b), $ and $ (- a ) \mid (- b)$.

 If $a \mid b$, show that $(- a ) \mid b, ~ a \mid (- b), $ and $ (- a ) \mid (- b)$.

 Answer: Suppose that $a \mid b$. So there exists an integer $c$ such that $b = a \cdot c$.  We can write $b = a \cdot c$ as $b = (- a) \cdot (- c)$, where $(-a), ~ (-c)$ are integers. This gives $(- a ) \mid b$. Now multiply $b = a \cdot c$ by $(-1)$, we will have either $(- b) = a \cdot (- c)$, where $- c$ is an integer or $(- b) = (- a) \cdot c$, where $ c$ is an integer . This gives  $a  \mid (- b)$ or $ (- a ) \mid (- b)$. Therefore we have $(- a ) \mid b, ~ a \mid (- b), $ and $ (- a ) \mid (- b)$.

Popular posts from this blog

Definition of divisibility and Theorem on divisibility

The Division Algorithm / Prove that given integers $a$ and $b$, with $b > ~ 0$, there exist unique integers $q$ and $r$ such that $a = b \cdot q +r$, where $0 \leq r < b$. The integer $q$ is called the $\textbf{quotient}$ and the integer $r$ is called $\textbf{remainder}$.

Define Greatest Common Divisor and Prove that if $a$ and $b$ are any integers, not both of them are zero. Then there exist integers $x$ and $y$ such that $gcd(a, b) =a \cdot x + b \cdot y$.